Closing Tues: HW 9.7(2), 9.8, 9.9
Exam 1 is Thur, Jan. $25^{\text {th }}$ covers 9.3-9.9.

Recall: Finding Derivatives

Step 0: Rewrite powers and simplify.
Step 1: Product, Quotient or Chain?
Step 2: Use appropriate rule, in the
middle of that rule you may need
to do a derivative (back to step 1)
Entry Task: Find the derivatives of

1. $f(x)=4 x^{3}\left(6 x^{2}+7\right)^{10}$
2. $g(x)=\frac{3}{\sqrt{x}}+\frac{x^{2}}{5}+\frac{x^{4}}{3 x+1}$

9.8 The Second Derivative

The second derivative is the derivative of the derivative. We denote it

$$
f^{\prime \prime}(x) \quad \text { or } \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

Example:
Assume x in seconds and y in feet.

$$
y=x^{3}+2 x
$$

The second derivative represents the rate at which the rate of the original quantity is changing.
(rate of change of rate of change) We will interpret more later, for now compute it.

Example: Find $f^{\prime \prime}(x)$

(use only positive exponents in your final answer)

$$
f(x)=\frac{2}{x^{3}}-\sqrt{x}
$$

Example: Revenue (in dollars) is given by

$$
R(x)=70 x+0.4 x^{3}
$$

if you sell x items.

1. What is marginal revenue (denoted $M R$ or $\overline{M R}$) at 10 items?
2. What is the rate of change of marginal revenue when you sell 10 items?

9.9 Applications and Deriv. Graphs Application 1: Demand Functions and Total Revenue

Recall from Math 111:
A demand curve is given by an equation that relates the quantity that will sell based on the market selling price. And

$$
\text { Revenue }=\text { Price } \cdot \text { Quantity }
$$

Example (from HW 9.9/1):
Assume $\quad x=$ items sold (quantity)
$p=$ price per item.
From market analysis you estimate

$$
p=460-0.2 x
$$

a. Find $T R(x)$ and $M R(x)$.
b. What quantity maximizes $\operatorname{TR}(x)$?

Two More Examples:

1. (part of HW 9.9/6)

The selling price on the competitive market is 90 dollars/item.
Find $T R(x)$ and $M R(x)$.
2. If the demand function is

$$
p=\frac{500}{(3 x+1)^{2}}
$$

Find $T R(x)$ and $M R(x)$.

Application 2: Cost Analysis and Profit

Recall from Math 111:
TC(x) = "total cost to produce x items"
AC(x) = "overall average cost to produce x items"
$A C(x)=\frac{T C(x)}{x}$ and $T C(x)=x A C(x)$
Example (part of HW 9.9/5 and 6):
The (average) cost per unit is given by $130+0.5 x$ dollars/item
Find $T C(x)$ and $M C(x)$.

Recall from Math 111:
Profit and marginal profit are given by

$$
\begin{aligned}
P(x) & =T R(x)-T C(x) \\
M P(x) & =M R(x)-M C(x)
\end{aligned}
$$

When profit is maximized

$$
M R(x)=M C(x)
$$

Specifically, where it switches from $M R>M C$ to $M R<M C$.

Example (directly from HW 9.9/5)
The price of a certain product is $\$ 400$.
The cost per unit of producing the product is $130+0.5 \mathrm{x}$ dollars/item.
a. Find $T R(x)$ and $M R(x)$.
b. Find $T C(x)$ and $M C(x)$.
c. Find $P(x)$ and $M P(x)$.
d. How many units should you produce and sell to maximize its profits?

Another example
(directly from an old midterm):
You sell items.
If q is in hundred items, then $\operatorname{TR}(q)$ and $T C(q)$ in hundred dollars are given by
$T R(q)=30 q$
$T C(q)=q^{3}-15 q^{2}+78 q+10$
a. Find marginal cost at 2 hundred items
b.Find the longest interval over which marginal revenue exceeds marginal cost.
c. What is the maximum value of profit?

Graphs and Derivatives
Example: Let $f(x)=2 x^{2}-3 x$
Find $f^{\prime}(x)$.

$$
f(x)=2 x^{2}-3 x
$$

$f^{\prime}(x)=4 x-3$

Notes/Observations: Given $y=f(x)$.

- $y=f^{\prime}(x)$ is a new function.
- $f(x)=$ "height of the graph at x "
- $f^{\prime}(x)=$ "slope of $f(x)$ at $\mathrm{x}^{\prime \prime}$
- $f^{\prime}(x)$ is "instantaneous rate of change" (speedometer speed)
- The units of $f^{\prime}(x)$ are $\frac{y \text {-units }}{x \text {-units }}$.

Fundamental to all applications:

$f(x)$	$f^{\prime}(x)$
Horiz. Tangent (peak, valley, or "chair")	Zero (crosses x-axis)
Increasing (uphill)	Positive (above x-axis)
Decreasing (downhill)	Negative (below x-axis)

Old Exam Question:

The height of a balloon after t seconds is given by

$$
B(t)=15 t^{2}-t^{3} \quad \text { feet. }
$$

a. At time $t=1$ second, is the balloon rising or falling?
b. Find the maximum height reached by the balloon.

